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Introduction 

This report describes two ranking algorithms (ITA[1] and ELO[2]) applied to the 2014-15 
CSA season. 

The first algorithm we describe and apply is currently used by the Intercollegiate Tennis 
Association (ITA) to rank college teams and individuals. At the start of each season a 
ranking committee determines a pre-season ranking list.  After a “sufficient” number of 
matches have been played, the ITA switches to a computer system where points are 
accumulated for beating the “NBEST” highest ranked teams based on current rankings. 
The number of points gained for beating the top ranked team is 106; for beating the 
second ranked team 102; the third ranked 98, etc. In college tennis, the value of NBEST 
increases from 4 to 10 during the season as match results are accumulated. Teams are 
penalized for losses. The penalty for losing to higher ranked teams is less than the 
penalty for losses to lower ranked teams. The ITA has applied its algorithm for several 
years to college tennis. Details are described in a Ranking Manual available online[1] to 
coaches and players. The only clearly subjective input is the initial coaches ranking poll. 
By all accounts, coaches and players are satisfied with the ranking method. However, in 
applying the ITA method to CSA results we find some troubling characteristics: (a) initial 
ranking affects ranking position late into the season, and (b) details of match schedule 
affect ranking predictions. Nevertheless, widespread acceptance of the ITA ranking 
method by the ITA constituency should give us hope that if CSA chooses to adopt an 
objective computer ranking method, it will be accepted. 

The second ranking we describe in detail (beginning on p 17) is a variant of the ELO 
chess rating system. ELO has been applied for many years to a variety of sports and is 
closely related to Bradley-Terry rating[3]. (We thank Vir Seth for sharing a write-up of 
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work he did as a senior at St. Lawrence University applying the Bradley-Terry 
method to the CSA 2013-14 season). ELO is one of the rating systems chosen by Jeff 
Sagarin[4], the well-known sports statistician, whose ratings help determine the 
participants in the NCAA Mens Division 1 Basketball Championship Tournament as well 
as the Bowl Championship Series of college football.  ELO  awards / penalizes rating 
points by an amount proportional to the difference between how teams are “expected” 
to perform (based on current ranking points) and how they actually perform. The 
probabilistic underpinnings of ELO will be explained, as will the ideas behind 
expectation of performance. The variant of ELO we use allows a self-consistent 
calculation of ranking that takes into account all matches played. This removes any 
dependence on match schedule. Pre-season ranking plays no role in ELO ranking 
(Sequential ELO or Self-Consistent ELO), and no adjustable parameters appear in the 
self-consistent version. 

Both ITA and ELO ranking methods were applied to the 2014-15 men’s CSA team 
results through the end of the regular season (Feb 15).  As a reality check we compared 
ITA and ELO ranking predictions with the CSA pre-tournament rankings.  Whereas ELO 
provided sensible rankings through all five divisions of play, the ITA method produced 
unsatisfactory predictions outside of the top 25 teams.  We also applied ELO to the 
women’s 2014-15 season, again finding sensible ranking predictions, confirming that 
Self-Consistent ELO is a good candidate for adoption by the CSA as a reliable, 
objective computer ranking system. 
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ITA Rankings 
  
The first ranking method we study is one currently employed by the Intercollegiate 
Tennis Association (ITA). The following is extracted from the ITA Ranking Manual[1] 

ITA Rankings GUIDELINES AND RULES – TEAM

1. The first six national top 75 team rankings of the spring will be decided by 
vote of the ITA National Ranking Committee. For the remainder of the spring 
dual match season, the rankings will be based on the ITA computer ranking 
system (beginning February 24). For each countable victory and all losses a 
team receives a prescribed number of points (see point chart) based upon the 
national ranking of the opponent defeated. Victories and losses in ITA- 
sanctioned college dual matches will count towards the team ranking.

2.  A team is worth its current value/ranking. If a team drops or climbs during the 
season, it will always be worth its current ranking each given period. Each ranking 
period, the ranking average will be figured with the total of countable victories and all 
loses. If the team has fewer ranked victories than the countable victory total for the 
period, the rest of the counted victories will be its unranked victories. If the team has 
more ranked victories than the countable victory totals, the team’s highest countable 
victories will be those counted. All losses will be considered as countable matches, 
but losses are also weighted according to opponent rank.

3. The way the points are distributed – points for wins; percentages deducted for 
losses – they consider a team’s won- loss record, strength of schedule and 
depth of wins and losses; and significant wins and losses (with bonus points 
for road wins). The formula works as follows: Sum of points from ‘x’ best wins 
for that rankings period divided by [the ‘x’ best countable wins for that 
particular ranking period + Points from all losses].

4. The ITA National Ranking Committee can review Nos. 51 through 75 in the first five 
ITA computer team rankings and has the authority to adjust the rankings in that area 
to ensure the most-deserving teams enter into the rankings.

5. Shortened or different formats approved by the ITA can also count towards rankings 
(if both coaches have agreed on this prior to the match).

6. Non-division I opponents count as unranked wins and/or losses.

7. The NCAA team champion automatically goes to No. 1 in final ranking. Bonus points 
are awarded for advancement in the NCAA Team Championships (see point chart).
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The ITA Rating formula (para 3 of ITA Rankings GUIDELINES AND RULES) has the 
form

�                                     (1)

• Winpoints j are points won by team “i” for beating team “j”. The number of points 
won depends on the rank of team j on the day the rankings are calculated - not the 
rank of j on the day the match took place!  

• Similarly, Losspoints j are points which count against team i for losing to team j. The 
number of points that count against team i depends on the rank of team j. Again, it is 
the rank of team j on the day of the ranking calculation that matters. 

• Once the rating points Ri have bean calculated for each team on the given ranking 
date, the team rank is calculated by sorting the rating points in decreasing order. The 
team with the largest number of rating points is the number one ranked team; the 
team with the second largest number is the second ranked team, etc.

• As the season progresses and team ranks change from one ranking date to the next, 
the value of the rating points for a given team may change, even if that team has 
played no matches during this period. This is also true in the present CSA ranking 
system.

• It is only the points for each of the NBEST “best” wins and NWORST “worst” losses 
that count. “Best” for team i means count matches from the NBEST highest ranked 
teams that team i has wins against. “Worst” for team i means count matches from the 
NWORST lowest ranked teams that team i has losses against.

• For tennis rankings, “NBEST” are the so-called “countable matches”, and they 
increase from 4 to 10 as the season progresses.

• ITA tennis teams play many more matches than CSA (≳ 30 typically, 26 for Princeton 
this year)

• There is a strong argument for using less countable matches for CSA and limiting 
number of countable losses (eg NBEST = 5, NWORST = 5), as will be explained later.

The number of points won and lost are shown in Table 1 below[1]. 

Ri =
Winpoints j

j=1

NBEST

∑

NBEST + Losspoints j
j=1

NWORST

∑
, for all teams i
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ITA RATING POINT ASSIGNMENT CHART (for TEAMS)

�
• A similar chart exists for singles ratings.

The ITA college tennis ranking dates are shown in Table 2[1].

Not used in CSA application

Table 1
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ITA RANKING DATES FOR COLLEGE TENNIS 2014-15

 

The first few team rankings (14 Nov - 16 Feb) are done by committee ballot!

• For computer rankings, ITA formula (Eq 1) requires an initial ranking list. 

• All teams must have “enough” match data for computed ranking list to be stable (will 
see this when display evolution of CSA ranking results using ITA algorithm!). Eg., 
Princeton Men’s tennis team has played 6 matches before first released computer 
ranking.

A sample page showing a typical summary sheet of data provided to each school after 
rankings have been updated is shown in Table 3 below. 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Sample Sheet Summarizing Ranking Data

   

• Results which “count” and rationale for present rank are clear for coaches and players 
to see!

We now turn to the application of the ITA method to the CSA 2014-15 squash season.
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ITA Ranking Method applied to CSA 2014-15 Season
(Men)

Table 4 summarizes the ranking dates we used for both ITA and ELO rankings. The first 
ranking date is not until the end of November to give Ivy schools time to complete a 
couple of matches. Subsequently, rankings were performed approximately every week. 
A total of 447 matches were played by 59 teams. Match results were extracted from the 
CSA website[5].

Ranking Dates for ITA and ELO Calculations

�

Figs ITA-1a/b, ITA-2a/b and ITA-3a/b show ranking results using the ITA formula Eq 1. 
An additional multiplicative scale factor, SCALEL, has been included in the denominator 
(compared with Eq.1) for ease of investigating the effect of increasing/decreasing the 
penalty for losses. The nominal value used for ITA tennis ranking is SCALEL = 1.0. They 
also use NBEST = 10 (ramped from 4 during the season), and NBEST = “all”.

�                        (1′)

Table 4

RANKING DATE TOTAL NUMBER OF MATCHES 
PLAYED FROM START OF SEASON

TO RANKING DATE 

nov 30 2014 142   (142)

dec 08 2014 164   (22)

jan 10 2015 186   (22)

jan 18 2015 248   (62)

jan 25 2015 315   (67)

feb 04 2015 393   (78)

feb 08 2015 433   (40)

feb15 2015 447   (14)

R(i) =
Winpoints(j)

j=1

NBEST

∑

NBEST + SCALEL Losspoints(j)
j=1

NWORST

∑
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ITA Ranking Method applied to CSA 2014-15 Season
(Men)

Fig. ITA-1a shows the dependence of final ITA rank on parameters NBEST, NWORST 
and SCALEL for the top 30 teams according to the pre-season poll. The dependence on 
these parameters for teams ranked 31 and lower are shown in Fig. ITA-1b. 

�
Fig. ITA-1a
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ITA Ranking Method applied to CSA 2014-15 Season
(Men)

• Column A lists team names in order of CSA pre-season rank, numerated in column B. 

• Pre-tournament rank determined by the CSA is shown in column C. 

• Columns D and every second column thereafter lists the ITA prediction for pre-
tournament rank using NBEST, NWORST  and SCALEL values indicated by the green 
arrows. 

• NBEST = 99 indicates that all wins were taken into account in the summation over 
Winpoints in Eqs 1′. Similarly, NWORST = 99 indicates that all losses were taken into 
account in the summation over Losspoints. 

• Column E and every second column thereafter show differences in rank between ITA 
and CSA rank. 

• As a visual aid in detecting anomalous results, yellow shading indicates where 
differences between ITA and CSA rankings differ by greater than 3 spots.

�10
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ITA Ranking Method applied to CSA 2014-15 Season
(Men)

Observations:
• There is a lot of yellow! - significantly more than when we apply ELO - see later.

• The amount of yellow increases as we go down in ranking (compare, especially, top 
30 according to pre-season poll  - Fig. ITA-1a - with lower 30 - Fig. ITA-1b. Since 
agreement between ELO and CSA ranking is decent even for lower-ranked teams, we 
cannot blame the discrepancy between predicted ITA and CSA rank as due to a lack 
of validity of CSA rankings!

• Focusing on Fig. ITA-1a, the ITA method does somewhat better when we restrict the 
number of wins and losses using NBEST = 5 and NWORST = 5. The motivation for 
decreasing NBEST from the value 10 used in ITA tennis ranking is that college tennis 
teams play many more matches during the tennis season (≳ 30 typically, 26 for 
Princeton this year) than squash teams play during the CSA season. Assuming the 
ITA point allotments and number of countable matches are tuned to a typical ITA team 
schedule, scaling NBEST from 10 to 5 makes sense for the CSA based on the roughly 
2:1 ratio between number of tennis and squash team matches. Preserving the relative 
importance between losses and wins in Eq 1′ demands that we also scale NWORST. 

• Another strong argument exists for limiting NBEST and NWORST:  Eq 1 can be re-
written in terms of averages in the exactly equivalent form

  �  ,   where                                                  (1′′)

�

The numerator acts as a credit for matches won, the denominator acts as a penalty 
for matches lost. Column 4 of Figs. ITA-2a/b shows the number of matches played 
by each team during the 2014-15 CSA season. There is a wide disparity in this 
number. A team such as Trinity fulfills its conference commitments and plays a 
healthy schedule of matches against potentially stronger opposition. Trinity, therefore, 
plays significantly more matches (18) than competitively strong teams such as    
St. Lawrence (who play 13), or Harvard (11). From the ITA points table we see that 
the number of points awarded for winning decreases as the rank of opposition 
decreases. A necessary consequence and flaw in the ITA system if NBEST is not 
appropriately limited, is that the more wins a team achieves, the smaller becomes the 
average Winpoints (numerator in Eq 1′′), and the smaller becomes the accumulated 
rating points upon which rank is determined.

Ri =
Winpoints

1+ NWORST

NBEST
Losspoints

Winpoints = 1
NBEST

Winpoints( j)
j=1

NBEST

∑
and

Losspoints = 1
NWORST

Losspoints(j)
j=1

NWORST

∑
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ITA Ranking Method applied to CSA 2014-15 Season
(Men)

�
Fig. ITA-2a
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ITA Ranking Method applied to CSA 2014-15 Season
(Men)

�

Figs. ITA-3a/b show the evolution of rankings through the season. 

Fig. ITA-2b
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ITA Ranking Method applied to CSA 2014-15 Season
(Men)

�
• Although the rankings have settled down / converged to sensible values by early Feb, 

even as late as Jan 18 there are some ITA calculated ranks that are problematic and 
would cause consternation if published. (Will also be true of ELO, later!).

Fig. ITA-3a
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ITA Ranking Method applied to CSA 2014-15 Season
(Men)

Since the ITA ranking method is a sequential algorithm where updated ranking 
points are determined by the most recent ranking positions (through the points 
assignment chart) there can be a strong dependence of final rank on match 
schedule. To illustrate this, Fig. ITA-4 shows the effect on final pre-tournament rank of 
assuming that matches which actually took place between Feb 08 and Feb 15 had, 
instead, taken place between Feb 04 and Feb 08, and vice-versa. We see a troubling 
number of changes to final rank position - troubling because of potential impact on 
tournament division selection. 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ITA Ranking Method applied to CSA 2014-15 Season

INSTABILITY OF ITA RANKINGS w.r.t. MATCH SCHEDULING

�
We now turn our discussion to ELO ranking and a version of ELO that avoids any 
dependence on match schedule, as well as having other attractive features 

Fig. ITA-4
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ELO BASICS

Sequential ELO[6]:

At the start of each season each team is assigned the same number of ranking points 
(the actual number has no effect on final rank, and here we assume the number is 
1000). After each match, say between teams labeled “i” and “j”, ranking points for team 
i are updated according to

�                                                           (2)

where

�                      (3)

Here 
• R′i is the new ranking points for team i
• Ri   is the old. 
• K ( Si - Ei ) is the points adjustment.
• Si is a numerical expression of the match result from i’s perspective: 1 = win, 0 = loss 

(and 0.5 for a tie).
• Ei is the expectation that team i beat team j given their ranking point differential ΔR 

prior to the match. Later we will explain where this expression comes from.
• Rs is a scale factor tuned to set a reasonable probability that a team can pull an 

upset and beat a team with a chosen point differential.
• K is an exchange factor that governs the magnitude of rating changes (how rapidly 

the rating points can adjust from one ranking period to the next).

Typical parameter values used in Chess Federation rankings are K = 32 and Rs = 175.

The average number of rating points among all teams is conserved throughout 
the season in ELO rankings!

Familiarizing Example 1: Imagine teams i and j play each other and i beats j. Coming 
into the match assume both i and j are tied with the same number of ranking points    
( Ri = Rj ). We would expect that each team is equally likely to win. Sure enough, Ei 
evaluates to 0.5 when ΔR = 0. Since i won the match, Si = 1, therefore team i’s points 
are adjusted to  R′i = Ri + 0.5*K (a change proportional to the exchange factor K). 
From team j’s perspective, Sj = 0 and Ej = 0.5, therefore R′j = Rj - 0.5*K.   In the 
updated rankings team i will appear above team j because i has gained points through 
the win. Team j however has lost points to slip below i. This penalty for losing may even 
cause j to slip behind other nearby teams. 

′Ri = Ri + K Si − Ei[ ]

Ei=
1

1+e-ΔR/Rs
,   where ΔR = Ri − Rj
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ELO BASICS

Familiarizing Example 2: Team i plays team j and i beats j. However, coming into the 
match assume there is some point differential ΔR = Ri - Rj ≠ 0 between the teams. In 
Eq 2 we must evaluate Ei, the expectation that i beats j given this ΔR. So we had better 
understand this function, and the scale factor Rs that appears in it.

Figure ELO-1 shows a plot of Ei, Eq 3, as a function of points differential for three 
assumed values of the scale factor Rs. We see that Rs controls how rapidly the 
expectation curve rises as a function of ΔR. If, instead of  Rs = 1.0, 2.0 and 3.0 we 
choose 10 or 100 times these values, the plot shape does not change; we simply 
multiply the scale on the horizontal axis by 10 or 100. This shows that the appropriate 
choice of the scale factor is simply cosmetic. It controls the scale of the ranking points 
distribution.
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Blue:   Rs = 2.0

Green: Rs = 3.0

Ei =
1

1+ e−ΔR/Rs

Fig. ELO-1
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ELO BASICS

For a point differential of ΔR = 2.0,  Fig. ELO-1 shows:

Ei = 0.66 when Rs =3.0;

Ei = 0.73 when Rs =2.0; There is a 73% chance that team i will beat team j if the point 
differential between i and j is 2.0 and, equivalently, a 27% chance that j will upset the 
point spread and beat i. For Chess Federation rankings with Rs = 175, these are the 
likely percentages for winning/losing matches with a point differential of 350.

Ei = 0.88 when Rs =1.0.

Before showing results, we dig deeper into ELO to understand what “expectation of 
winning” means and how probability arguments make sense in a ranking system.

Theoretical Underpinnings of ELO:

Most would agree that the outcome of a match between two teams (or competitors) 
depends on the (current) abilities of the two teams. The ElO method assumes a 
probability for competitor “i” beating competitor “j” as a ratio that can be written 
schematically as

P(i beats j)  ~ strength(i) / [ strength(i) + strength(j) ].          (4)

But what does “strength” mean here?    
  
The ELO rating system assigns to every team a numerical rating based on performance 
in matches. The rating is a number in some range (explained later) that changes over 
time depending strictly on the outcome of matches. When two teams compete, the 
rating system predicts that the team with the higher rating should win more often than 
the team with the lower rating. The larger the difference in ratings, the greater the 
likelihood that the higher rated team will win. Once the ratings are calculated, they 
can be sorted in order of decreasing value to determine team rank

There are many factors that determine how well players on a given team will perform on 
a given day (niggling injuries, fatigue from a recent challenge match, how well match 
preparation went, nerves, …). We can expect that the distribution of performance 
strength takes the shape of a curve such as shown in Fig. ELO-2 below. ELO 
calculates the average rating of each team - the location of the peaks. This is 
quantity Ri in Eq 2. (We can conjecture that the width of the “strength distribution” will 
be narrower for elite teams, where players have considerable competition experience, 
than it will be for lower ranked teams. But this is not an assumption we use!).
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ELO BASICS

Imagine two teams, named Blue and Red, that are scheduled to play each other. 
Assume Team Blue is ranked behind Team Red which means that the average rating of 
Blue is less than the average rating of Red. (The blue peak is to the left of the red peak 
in Fig. ELO-2). Each team has the potential to perform at a level corresponding to any 
point along its performance strength distribution curve. To simulate a match between 
Blue and Red, we ask a computer to select a pair of points at random, one from each 
strength distribution. The blue and red dots in Fig. ELO-2 illustrate one such simulated 
match. Although Red is ranked ahead of Blue, the simulation has chosen a scenario 
where Team Red significantly under-performs relative to its mean, and Team Blue over-
performs relative to its mean. In fact, the combined relative performances have resulted 
in a simulated playing strength for Team Red that is less than the simulated playing 
strength of Team Blue. In this computer match, Team Red would lose to Team Blue in 
spite of the fact that Team Red is actually ranked ahead of Team Blue. The Navy-
Princeton or F&M-Rochester “upsets” are good examples of a realization of Fig. ELO-2.

Let variable x denote the difference between the sampled performance strengths of any 
two teams (x is shown in Fig. ELO-2). We sample the strength distributions many times 
(as if simulating many matches between Blue and Red), each time sampling the two 
distributions, always taking the difference in the same order (eg Red minus Blue), and 
building a frequency distribution of results. By appropriately normalizing the frequencies 
we build a  “probability distribution function (pdf)” p(x) for the difference between team 
performance strengths. A powerful theorem of mathematics, called the Central Limit 
Theorem, guarantees that if we sample enough times, and plot the distribution of the 
sample means of x, the resulting distribution is a bell curve - a Gaussian distribution 
with x in the range   - ∞ < x < ∞. In fact, this result does not depend on the actual form 
of the strength distributions that were sampled and is an important reason that statistics, 
applied correctly, can be successfully applied in many real life situations!

�20
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ELO BASICS

The probability distribution function p(x) tells us how common is the occurrence that  
sampled differences between playing strengths of two teams takes on the value x. From 
p(x) we can infer the expected result of a match between two teams that differ in 
ranking strength by a particular value, ΔR. We need P(x < ΔR), the probability that a 
sampled x is smaller than the actual difference in average ranking strength of the two 
teams. Mathematically, we can write this as 

�                (5) 

where E is known as the “cumulative distribution function (cdf)” and is defined such that 
its derivative is the probability distribution function p(x).

Rather than working with a Gaussian distribution, ELO ratings work with a very similar 
distribution called a “logistic distribution[7]” which has the advantage of having an E 
which can be written in terms of simpler functions than would appear if one worked with 
a Gaussian. Specifically, the logistic cdf takes the form

�

which was plotted earlier in this document. The scale parameter xs controls the slope of 
the E(x) at x = 0

Using the logistic function, Eq (5) becomes

      (6)
 

expressing the probability that Team i will beat Team j when their ratings differ by 
an amount ΔR. Comparing Eq 6 with Eq 4 we see a similarity to the intuitive ratio form 
for the probability of winning.

The ELO rating formula Eq 2 is seen to award / penalize rating points by an 
amount proportional to the difference between how the two teams were predicted 
to perform in their match and how they actually performed.

P(x < ΔR ≡ Ri − Rj ) = p(x)dx ≡ dE
dx−∞

ΔR

∫
−∞

ΔR

∫ dx = E(ΔR)

E(x) = 1
1+ e− x/xs⎡⎣ ⎤⎦

�21

P(x < ΔR) = E(ΔR) = 1
[1+ e−ΔR/Rs ]

= eRi /Rs

[eRi /Rs + eRj /Rs ]



SELF-CONSISTENT ELO

The shape of the curve E(ΔR) shown in Fig. ELO-1 determines how much credit / 
penalty a team gets for a win / loss. The credit / penalty is given by the “points 
adjustment” factor K (Si - Ei) in Eq 2. For a WIN (Si =1) against a team with ΔR > 0 
(i.e., team i was favored to win over team j), the amount of credit for the win 
DECREASES with increasing points spread ΔR, and INCREASES with increasing 
points spread if ΔR < 0 (in which case team i has scored an upset). Conversely, for a 
LOSS (Si =0) against a team with ΔR > 0, the penalty for losing DECREASES with 
increasing ΔR, but INCREASES with increasing points spread if ΔR < 0. In short: good 
wins are highly credited; bad losses are greatly penalized. I.e., strength of schedule is 
taken into account by ELO!

The ELO system most appropriate to college squash is Self-Consistent ELO, rather 
than Sequential ELO described so far.  In the self-consistent approach, each time 
the rankings are evaluated we take into account all matches that have taken place 
through that ranking date, going all the way back to the start of season. Sequential 
ELO would simply update the rankings based on what came out of the previous ranking 
calculation. Should rankings reflect most recent form, or the body of work (wins and 
losses) over the entire season?  If the same team was played multiple times a strong 
argument could be made for rankings to reflect most recent form. However, that is not 
the case in college squash. Most teams play each other only once during the regular 
season. Moreover, scheduling constraints may force a given team to play a rival early in 
the season. Why should that not count as much as another team playing the same rival 
later in the season when coaches have limited control over schedule ?!

Self Consistent ELO[8]:

First, we generalize Eq 2 using notation borrowed from Richard Brent[9].

N teams play a number of matches throughout any interval within a season. Each match 
can end with a win, loss or draw, with a win scoring 1 point, a draw 0.5 points, and a 
loss 0 points.  The results are stored in a score matrix S where Si j is the number of 
points that team i scores against team j. The diagonal elements Si i are arbitrary, but 
conveniently set to 0. The sum Si j + Sj i is the total number of games played between 
teams i and j. Each team has a points rating Ri, updated according to

       �

 
where                                                                                                      (7)

′Ri = Ri + K Si j − Si j Ei j
j=1

N

∑
j=1

N

∑⎡
⎣
⎢

⎤

⎦
⎥ ; i = 1,!,N
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SELF-CONSISTENT ELO

�

is the probability of i beating j given their ranking points differential. These equations are 
entirely equivalent to Eqs 2 and 3. The first term in the square bracket is the actual 
number of wins of team i against all opponents; the second term in the bracket is the 
expected number of wins.

At the start of the season, all teams are assigned 1000 ranking points. There is no 
subjective assignment of pre-season rank - every team has the same rank!!          
A number of ranking dates are chosen throughout the season - days when rankings will 
be evaluated (such as in Table 4). All match results from the start of season through 
each ranking date are entered into the score matrix S, and Eq (8) is iterated until a set 
of ranking points {Ri} is found such that the expected wins for each team 
matches the actual number of wins:

�                                    (8)

From Eq 7 we see that when this condition is satisfied then Ri′ = Ri for all teams, 
implying consistency between ranking points and match results!

There are no adjustable parameters in Self-Consistent ELO:

(a) The factor K does not appear in Eq 8.
(b) From Eqs 8 and 7 we see that the value of Rs has no impact on the ratings since it 

can be eliminated by a change of variable. It turns out that, depending on the 
method of iteration, Rs can impact the number if iterations it takes for the ratings to 
converge, and that convergence may only be achieved in a finite range of Rs 
values.

Results from Running Self-Consistent ELO rankings code on 2014-15 season

The Figs ELO-3 to ELO-6 summarize the results of applying the Self-Consistent ELO 
ranking method to the CSA 2014-15 season.

Examining the theory behind ELO ratings, whether Sequential or Self-Consistent, 
presents no clear argument that teams playing more countable matches than the 

Ei j =
1

1+ e−(Ri−Rj )/Rs

Si j − Si j Ei j
j=1

N

∑
j=1

N

∑ = 0 for all teams i.
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SELF-CONSISTENT ELO

average should have their ranking affected (unlike our finding with ITA rankings). 
However, we felt this should be tested, and results are shown in Figs. ELO-3a/b. Here, 
columns D and E (indicated by green arrows) show final pre-tournament rankings 
predicted by Self-Consistent ELO when all matches played by each team are counted 
(col D) and when this number is limited to 13 (col F). We see little difference, as 
predicted.

Columns E and G of Fig. ELO-3a show differences between the ELO predicted pre-
tournament (Feb 15 2015) rankings and the rankings assumed by the CSA. As in Figs. 
ITA-1a/b, yellow shading is used to indicate significant differences between ELO 
predictions and CSA rank, where a “significant difference” is defined as greater than 3 
positions. 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SELF-CONSISTENT ELO APPLIED TO THE CSA 2014-15 
SEASON - Men 
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Fig. ELO-3a
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SELF-CONSISTENT ELO APPLIED TO THE CSA 2014-15 
SEASON - Men

continuation:

For teams in the bottom 30, ELO predictions are much closer to CSA ranking than was 
found using the ITA method. With no restriction on countable matches (in future all of 
our ELO result discussions will apply to this unrestricted case), only Georgetown in the 
top 30 had an ELO ranking significantly different than CSA ranking. Interestingly, even if 
were to modify our definition of significant difference to “greater than 2 positions”, only 
Brown, GWU and Stanford would be additionally flagged and we are aware that a 
provisional pre-tournament CSA ranking list had Brown and GWU in positions that were 
more consistent with the ELO predictions but those provisional rankings were 
subsequently adjusted for to penalize Brown for lacking a sufficient “strength-of-
schedule”.  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SELF-CONSISTENT ELO APPLIED TO THE CSA 2014-15 
SEASON - Men

Figs. ELO-4a/b show final ELO rank, including data on matches played, matches won 
and lost, and quantities we denote by Wins(+) and Losses(-).  The first of these, Wins(+) 
is the number of wins a team has against opponents who finished higher in the ELO 
rank; Losses(-) is the number of losses a team has against opponents who finish lower 
in rank. 

�27

Fig. ELO-4a



SELF-CONSISTENT ELO APPLIED TO THE CSA 2014-15 
SEASON - Men

continuation:

There is a class of ranking methods called Minimum Violations Ranking (MVR)[10] which 
algorithmically seek to minimize the number of so-called ranking violations, which occur 
when a lower ranked team beats a higher ranked team. Summing Wins(+) (= Losses(-)) 
over all 59 teams gives the total number of rank violations. Comparing the data shown 
in Figs. ELO-4a/b with those in Figs. ITA-2a/b we find 21 violations for ELO compared 
with 31 for ITA.  If we adopt the number of violations as a metric for effectiveness of 
ranking scheme, ELO “wins” over ITA.
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SELF-CONSISTENT ELO RANKING HISTORY CSA 2014-15 
SEASON - Men

Figs. ELO-5a/b show the evolution of ELO rankings through the season. Here, teams 
are sorted according to their final ELO rank. For most teams, the rank has stabilized by 
the second ranking date in Jan.

�
At the start of each season, every team starts with the same number of ranking points 
(1000). This is part of the objective assumption. At any point in the season, when two 
teams play one another there is a transfer of ranking points between just those teams. 
The winner gains a certain number of points and the loser loses the same number of 
points. Exactly what that number is depends on what the ranking points differential is 
between the teams immediately prior to them playing. So, let's consider what happens 
after the first week of matches. Half of the teams that played (the winning teams) gain  

Fig. ELO-5a
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SELF-CONSISTENT ELO RANKING HISTORY CSA 2014-15 
SEASON - Men

ranking points, and the other half (the losing teams) lose ranking points. Teams that 
didn't play retain their previous ranking points. No matter how good one imagines the 
teams are that didn't play during the first week of play are, they will be ranked behind all 
of the teams that won during that week, and be ranked AHEAD of all the teams that lost 
during that week. A team that continues to win continues to gain ranking points; a team 
that loses continues to lose ranking points. Drexel scheduled many of its toughest 
matches early in the season and did not win until after the 10 jan ranking date. 
Therefore, on 10 jan its ranking points total will be its starting value (1000) minus a 
bunch of points whose magnitude depends on the quality of the teams it has lost to. 
This is why Drexel has a weak early ranking (lower than 30 - the "average" rank since 
there are approximately 60 teams). Once Drexel starts winning matches its ranking 
rapidly improves. Chicago had an unbeaten season so it must, by the ELO method, end 
with a number of ranking points equal to its starting value (1000) plus a bunch of points. 
Chicago’s strength of schedule(SoS) was “weak” (the highest ranked team it played was 
Georgetown (#27)) and the CSA must be diligent in enforcing adequate team SoS. 

continuation: 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SELF-CONSISTENT ELO RANKING HISTORY CSA 2014-15 
SEASON - Women

 

Early ranking “anomalies” will always be resolved by ELO before the end of the regular 
season. Consideration can be given to “publishing” traditional CSA rankings until some 
agreed date (eg second ranking date in Jan) with a switch to ELO computer rankings for 
the remainder of the season. 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SELF-CONSISTENT ELO - INTERPRETATION OF RANKING 
POINTS

Finally, we discuss how to interpret the ELO ranking points that appear in the third 
column of Figs. ELO-4a/b and are repeated in Fig. ELO-6 below for the top 30 ranked 
teams according to the Feb 15 rankings. In particular, how should we interpret 
magnitudes of point differentials between teams? If we simply take the difference in 
ranking points to form ΔR, substitute into the expression for E(ΔR) given, for example, 
in Eq 3, we obtain the expectation of winning and losing if the two teams were to play 
one another again. If the reader is uncomfortable with evaluating the expression for E, 
he/she can simply estimate the value by interpolating from the Table that appears on the 
right hand side of the Figure.
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E(ΔR) = 1
[1+ e−ΔR/Rs ]

Expectation of Winning and Losing 
given ranking points spread = ΔR

(using the same Rs = 6.667 that 
produced the rankings)

Fig. ELO-6

ΔR %E(ΔR) %E(-ΔR)

0 50.0 50.0

0.5 51.9 48.1

1.0 53.7 46.3

2.0 57.4 42.6

4.0 64.6 35.4

8.0 76.9 23.1

16.0 91.7 8.3



SELF-CONSISTENT ELO - INTERPRETATION OF RANKING 
POINTS

Example 1: The points gap between Trinity and St Lawrence (1177.19 - 1175.64 = 1.55) 
implies an expectation / probability of Trinity beating St Lawrence approximately 56% of 
the time. Equivalently, St Lawrence is predicted to beat Trinity 44% of the time.

Example 2: Princeton vs Navy points gap at end of season is 17.22. Navy beat 
Princeton and the magnitude of this upset is quantified by E(ΔR) = E(17.22) = 0.93. The 
ELO-predicted expectation of Princeton winning, given the season results, is 93%; and 
of Navy winning is 7%.  ELO agrees that Navy pulled a big upset over Princeton!

Example 3: Consider the following question: 
Q: Is a win by the 35th ranked team over a team ranked 30 equivalent to the 6th ranked 
team beating the number 1 ranked team?
A: The way to look at the ELO rankings is that the number of points "gained" for winning 
a match is proportional to the quantity in square brackets on the RHS of Eq 2, where E 
is given by the expression on the RHS of Eq 3. For the S term in Eq 2 you use the value 
1 if you win, and the value 0 is you lose. The crucial thing is that the points gained or 
lost depends only on the difference in rating points for the two teams. So it is not 
necessarily true that a win by the 35th ranked team over the 30th ranked team is the 
same as 6 beating 1 UNLESS the difference in rating points between the 35th and 30th 
teams is the same as the difference in points between the 6th and 1st. Specifically, from 
p27 Fig ELO-4a in the case of the Men’s 2014-15 season, the 1st ranked team has 
1177.19 rating points, the 6th team has 1161.36 for a difference of 15.83. The 30th 
ranked team has 1003.01 points and the 35th team has 960.65 points for a difference of 
42.36. This is MUCH more than the difference between the 1st and 6th ranked teams. 
So there is a much greater difference in computed strength between the 35th and 30th 
teams than between the 6th and 1st, and a much lower probability of winning as a result 
(from plugging into the expression for E). Note also that the rating points gap (computed 
difference in level) between teams 31 and 30 was 15.91 ... more than twice he points 
gap (computed difference in level) between Rochester and Columbia who were ranked 
6 and 3 respectively. This example is specific to the points distribution for the 2014-15 
season!
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SUMMARY COMPARISON BETWEEN 
CSA, ITA AND ELO 

- Men
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Fig. SUMMARY-1a



SUMMARY COMPARISON BETWEEN 
CSA, ITA AND ELO 

- Men

continuation:
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DISCUSSION
When comparing ITA predictions with ELO predictions it is important to take a 
dispassionate view of the results. For example Princeton, Drexel, and Bates would 
surely prefer the ITA predictions shown in Fig. SUMMARY-1a over the ELO predictions, 
whereas Penn, Navy, and Brown would likely prefer ELO predictions over ITA 
predictions! However, it is best to review the findings discussed previously.

First, we must note that there is no such thing as a “correct” ranking system. At best, our 
job is to seek a robust system which gives sensible results and produces an acceptably 
small number of ranking anomalies. The alternative is to maintain the hands-on 
approach used by the CSA until now. However, one of the most contentious aspects 
within the association is rankings, whether individual or team. Bubble positions between 
the various divisions will always be a particular focus and to minimize contention the 
CSA should eliminate human influence and apply an objective ranking system.

In choosing ranking methods to test on college squash results we were initially attracted 
to the ITA method since it has been applied for a number of years to rank teams and 
individuals in college tennis. If the ITA system proved to be satisfactory for squash, a 
closely related racket sport, there would be advantages to advertising that the CSA was 
adopting the same approach used by the ITA. For all the criticism that the CSA receives 
for its team rankings we know that, for the most part, the CSA gets team rankings right! 
This is the reason for comparing predictions of candidate computer rankings with the 
CSA’s rankings. We should hope for good, but not identical, agreement. Although the 
ITA method (with parameters NBEST and NWORST tuned to squash) was found to 
produce sensible results for teams ranked in the top 25, the results were strikingly 
deficient for teams ranked below the top 25 (see Figs. ITA-2a/b). Additionally,  the ITA 
method shows an unfortunate dependence of ranking results on match date schedule 
(see Fig. ITA-4 for a simple demonstration). This is especially troubling since detailed 
scheduling is beyond the control of team coaches.

The ELO ranking method has been applied by the US Chess Federation since 1960, 
and by the World Chess Federation since 1970. By November 2012, over 11,000 chess 
players worldwide had an active ELO rating! The ELO system has been applied to many 
team sports, including professional basketball, football and soccer. The particular brand 
of ELO that is usually discussed in the literature (and is the version used in chess) is 
called Sequential ELO in this report. However, for college athletics where there is a 
100% turnover of players in each team over the course of four years, and where a 
single particularly strong recruiting year can completely change a team’s prospects for 
having a successful season, we believe that the most appropriate form of ELO to use is 
the iterated Self-Consistent ELO method. This method does not require a subjective 
pre-season rank - all teams have equal rank at the start of each season, its results are 
completely independent of match date schedule since it takes into account all matches 
that have been played to date in the season, and there are no adjustable (by human) 
parameters in the method. Figs. ELO-3a/b shows that Self-Consistent ELO produces 
sensible results for teams ranked in the top 25 and, for the most part, for teams ranked 
below the top 25 as well. 
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DISCUSSION
Based on the men’s CSA 2014-15 season, it appears that Self-Consistent ELO is a 
promising candidate for adoption by the CSA as an objective computer ranking system, 
whereas ITA is not. To ensure that the ELO success is not specific to the men’s 2014-15 
dataset, we have also applied Self-Consistent ELO to the women’s 2014-15 season and 
the men’s 2013-14 and 2012-13 seasons:
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DISCUSSION
Women’s results are shown in Fig. ELO-women. We see good agreement through the 
top 18 spots between ELO and CSA. The last column, in red, displays the difference 
between ELO and CSA ranking, with yellow highlighting where differences are greater 
than 3. Were it not for Virginia, Georgetown and Northeastern we would probably make 
a blanket statement here that the ELO ranks make sense throughout. However,  it is 
striking that the ELO predicts these three teams should be ranked much higher than 
their CSA rank. After a cursory review of all match results for these teams we were 
unable to find compelling arguments for preferring the ELO ranking of these teams over 
CSA’s (or vice versa!). We note, however, that the CSA ranking system makes use of 
pre-season rank. In the absence of registered “upsets” memory inherent to the method 
preserves rank (whether high or low). ELO, on the other hand, makes teams earn their 
rating points, positive or negative with respect to their starting mean of 1000 in this 
report. 

Consider now CSA’s ranking of Columbia, GWU and Dartmouth (7, 8 and 9 
respectively) compared with ELO’s 8, 9 and 7. CSA chose to invoke a triangle for these 
teams since Columbia beat Dartmouth, GWU beat Columbia, and Dartmouth beat 
GWU. However, if instead of invoking triangles the CSA had adopted a different 
decision mechanism - one where records are compared against opposition excluding 
teams in the triad.  Then we would find Dartmouth has “best” wins against Brown (#11) 
and Williams (#12); Columbia has best wins against Brown (#11) and Middlebury (#13); 
and GWU has best wins over Middlebury (#13) and F&M (#14). This would decide rank 
in precisely the order that ELO has predicted. This shows that the ELO order is, in fact, 
a perfectly logical choice. It just happens not to be the one that the CSA has chosen! 
   
Both Harvard and Penn are seen to be ranked at the top with an identical number of 
rating points. The fact that Penn is listed #1 in the ELO ranking is an arbitrary 
convention buried in the logic of writing our version of ELO! In the event of obtaining a 
tie in points such as found here, a tie-breaking convention must be adopted.  For 
completely different reasons, CSA invoked yet another triangle for settling final order 
between the Harvard, Penn and Trinity women.  In the ELO context this is not 
necessary since Trinity has fewer rating points than Harvard and Penn (albeit by a very 
small margin). Nevertheless, adhering to the ideal of avoiding subjective decisions, ELO 
would declare that Trinity is unambiguously #3  and only the question is how to split the 
tie between Harvard and Penn. The resolution is uncontroversial - The tie is broken by 
determining who won the regular season dual meet. Penn won this encounter, therefore 
Penn would be declared #1 based on ELO plus objective decision making.

Finally, we consider the Men’s 2013-14 and 2012-13 seasons along side the previously 
shown Men’s 2014-15 season.
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CSA AND ELO PREDICTIONS FOR MEN’S SEASONS 
2012-13, 2013-14, and 2014-15

Notes: 
• The agreement between ELO predictions and CSA is excellent for teams through the 

top two divisions.
• Anomalous differences are most often associated with emerging and club teams such 

as Chicago, Georgetown and Stanford (2014-15 results), Bucknell, Northeastern 
(2013-14 season). All emerging and club teams were included in the ELO ranking 
calculations and treated on an equal basis with the varsity teams!
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* Princeton, Harvard equal ranking points - rank decided by dual match result.
** Yale, Cornell rank decided similarly.

Fig. ELO-CSA COMPARISONS



CSA AND ELO PREDICTIONS FOR MEN’S SEASONS 
2012-13, 2013-14, and 2014-15

Does the ELO choice of ranking Columbia ahead of Harvard in 2014-15  have a rational 
basis?: 
• Columbia (#3) had 0 upset wins and 1 minimal upset loss to Harvard (#4). 
• Harvard (#4) had 1 minimal upset win over Columbia (#3) and 1 upset loss to 

Rochester (#6) ranked two places behind
• If rank positions were to be reversed, Columbia would have 0 upset wins and 0 upset 

losses (ie in a relatively better situation). However, Harvard would no longer have any 
upset wins and would have an even worse loss to Rochester (who would be 3 spots 
lower)  ⇒ the ELO rank has a logical basis!

In conclusion, Self-Consistent ELO does, indeed, hold promise. It’s application to 
ranking individuals for the CSA Individual Tournaments and All-American awards would 
be equally straightforward.
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RPI Comparison with ELO and CSA 

ELO - CSA is difference in rank between ELO and CSA
RPI - CSA is similar difference between RPI and CSA
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